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ABSTRACT 

This paper presents asymptotic stabilization strategy for nonlinear systems, in which the 
individual states are constrained within certain ranges. A barrier function whose value 
increases to infinity as the argument approaches the boundary of the constrained region is 
utilized as a Lyapunov function candidate. The derived control law guarantees that, for all 
initial conditions within the constraint range, the asymptotic stability of the origin is 
achieved and the state constraints are not violated for all time. The control gains assign 
the desired spectrum of the closed-loop system in a neighborhood of the origin, and a fast 
convergence of the states from initial conditions to the origin is achieved. By simulation, 
the performance of the proposed control law is compared with that of the control law 
derived upon a quadratic Lyapunov function and that of the nonlinear model predictive 
control. 
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1. INTRODUCTION 

Nonlinear control problems with state constraints exist in many physical systems including robotics 

(Widyotriatmo, 2012; Zhang, Shang, & Gao, 2013), electrostatic microactuator (Tee, Ge, & Tay, 

2009a), magnetic bearings systems (Do, 2010), and aeroelastic systems (Xiang, Liu, & Liu, 2013). 

Constraint violations can cause poor performance or component degradation, and damage of the 

system. Asymptotic stabilization of nonlinear systems without violating the constraints is of great 

importance in many applications. In this paper, a control design for uncertain nonlinear systems with 

state constraints is focused. 

 

For linear systems, the set invariance method (Blanchini, 1999) can be used to handle state 

constraints. For nonlinear systems, the model predictive controls (MPCs) (Mayne et al., 2000; 
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Findeisen et al., 2003; Mhaskar, El-Farra, & Christofides, 2006; Bravo, Alamo, & Camacho, 2006) and 

the reference governor methods (Bemporad, 1998; Gilbert & Ong, 2011) have been proposed. The 

MPC utilizes an iterative finite horizon optimization of the plant model. The reference governor 

methods modify the reference signal using an optimization algorithm to avoid constraint violation. For 

successful implementation of the methods, a proper optimization problem should be well formulated. 

In (Mahindrakar & Sankaranarayanan, 2008; Ding, 2009) linear-matrix-inequality-based (LMI-based) 

optimization methods were utilized in the control design of nonlinear systems with state constraints. In 

(Kristic & Bement, 2006), a backstepping method with appropriate control gains was used to ensure a 

small overshoot of tracking response. In (Liu & Zhao, 2012), fuzzy systems are utilized in 

backstepping design procedure. Necessary conditions for optimality for regular solutions of the 

terminal optimal control problems with state and endpoint constraints are presented in (Imanov, 2012). 

 

The Lyapunov method allows the direct design of a control law, which is embedded in an 

appropriately chosen Lyapunov function (Freeman & Kokotovic, 1996; Khalil, 2002; Widyotriatmo & 

Hong, 2011; Rehan & Hong, 2011). A quadratic function is usually utilized as a Lyapunov function 

candidate. Recently, for the systems with state constraints, the use of barrier functions was introduced: 

In (Tee & Ge, 2011), a barrier function method for output tracking of a state-constrained nonlinear 

system in strict feedback form was presented. However, in this work, an offline optimization method 

was utilized to determine the control parameters for maintaining the states inside the ranges of 

constraints. For the case of an asymptotic stabilization problem, it was shown that the initial conditions 

close to the boundary of a constraint region are not feasible to converge to the origin (Tee,  Ge, & Tay, 

2009b). On the other hand, for the systems with output constraints, the tracking control of a single-

input-single-output (SISO) system using the barrier-function-based method was applied to 

electrostatic parallel plate microactuators (Tee, Ge, & Tay, 2009a) and to magnetic bearings (Do, 

2010). 

 

In this paper, a control law for a nonlinear system utilizing a barrier function as a Lyapunov function 

candidate is designed. Using the proposed control law, the time derivative of the Lyapunov function 

becomes negative semidefinite, and the convergence of the states from all the initial conditions within 

constraints to the origin is guaranteed. The boundedness of the barrier functions ensures that the 

states never violate their constraints. 

 

Contributions of this paper are the following. First, a control law that achieves the asymptotic stability 

of the origin of a nonlinear system with state constraints is proposed. Second, using the proposed 

control law, all the initial conditions inside the constraints are forced to converge to the origin, while 

not violating the state constraints for all time. Thus, the method can be a viable solution to the 

problem in which any violation of constraints is absolutely prohibited. Third, the proposed method 

does not require an offline optimization method for determining the control parameters. Fourth, the 

proposed method can be applied to multi-input-multi-output MIMO systems. Fifth, the control gains 

determine the performance of the closed-loop system in a neighborhood of the origin, and a fast 
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convergence of the states to the origin is achieved. Sixth, the effectiveness of the proposed method is 

shown by comparing the performance of the proposed control law with the one derived from a 

quadratic Lyapunov function, and that based on the nonlinear model predictive control (NMPC) in 

(Grune & Pannek, 2011). 

 

This paper is organized as follows. Section 2 provides the problem formulation including the 

considered system and the properties of a barrier function. Section 3 discusses the derivation of 

control law based upon the barrier function as a Lyapunov function candidate. Section 4 presents 

simulation results of the proposed control law showing the effectiveness of the methodology, and the 

comparison of the proposed control law with other two methods available in the literature. Section 5 

draws conclusions. 
 

 

2. PROBLEM FORMULATION 
 

Let p

p

nT
nppp Rtxtxtx �� )](,),([)( ,1, �  and �)(txq  ,),([ 1, �txq

T
nq tx

q
)](,

qnR�  be the partitions of the 

state vector TT
q

T
p txtxtx )](),([)( � , and ,),([)( 1, �tt pp �� �  T

np t
p

)](
,, �

� � pnR ,�  and �)(tq� ,),([ 1, �tq�
 

�T
nq t

q
)](

,, �
� qnR ,�  be the unknown parameter vectors, where TT

q
T
p ttt )](),([)( ��� � . The following 

nonlinear system is considered. 

 � � � � )()()()()( txtxGttxFtx qpppp �� �� , (1) 

 � � � � )()()()()( tutxGttxFtx qqqq �� �� ,  (2) 

where � �:)(txFp �� qp nnR pp nnR ,�	 , � �:)(txG p �� qp nnR  
qp nnR 	 , � �:)(txFq �� qp nnR qq nnR ,�	 , and � �:)(txGq  

�� qp nnR  
qq nnR 	  are smooth mappings, and qnRtu �)(  is the input. Let ipx ,  and iqx ,  be the upper 

bounds of ipx ,  and iqx , , respectively. The control objective is to achieve the asymptotic stability of the 

origin, from the intial values xp(0) � �
 p { :)( pn
p Rtx � ipip xtx ,, )( � , i = 1, …, pn }, and xq(0) �

�
 q { :)( qn
q Rtx � �)(, tx iq iqx , , i = 1, …, qn }, while keeping xp(t)� p
  and xq(t)� q
  for all time. The 

following assumptions are made. 

Assumption 1: ip ,� � ip ,� , i = 1, …, n�, p, and iq ,� � iq,� , i = 1, …, n�, q, where ip ,�  and iq,�  are the 

upper bounds of ip ,�  and iq,� , respectively . 
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Assumption 2: � � )()( txktxF qFp p
�  and � � )()( txktxF qFq q

� for all time, where pFk  and qFk are 

positive constants. 

Assumption 3: � �)(1 txGq

  exists for all time. 

Remark 1. Assumption 1 limits the upper bounds of the uncertainties. Assumption 2 indicates that the 

uncertain term of the system can be directly compensated by the control input. Assumption 3 ensures 

that the control input always exists for all time. The three assumptions are adopted from the literature 

that discusses nonlinear control problem (Freeman & Kokotovic, 1996 ; Khalil, 2002). 

 

To prevent all the states of x from violating their constraints, the following barrier functions for 

individual states, � �:)(txV ii � ��
 ii xx , �R , i = 1, …, np + nq, are utilized as a Lyapunov function (Ngo, 

Mahony, & Jiang, 2005; Tee, Ge, & Tay, 2009b): 

 
� � ��

�

�
��
�

�



�
)(

ln
2
1)( 22

2

txx
xtxV

ii

i
ii , (3) 

which are continuous on ),( ii xx
 , positive definite, and � � ��)(txV ii  as ii xtx ��)( . The following 

lemma shows the use of barrier functions as a Lyapunov function candidate. 

Lemma. (Tee, Ge, Tay, 2009b; Do, 2010) Let z(t) = ,),([ 1 �tz �T
n tz

z
)]( znR . For some constants iz , i

= 1, .., zn , let �
z {z(t)� znR : ii ztz �)( , i = 1, …, zn }. Consider the system 

 ),()( ztftz �� , (4) 

where f: zz nn RRR �	� . Let Vi : � �ii zz ,
 � R+, i = 1, …, nz, be positive definite functions that are 

continuously differentiable on z
 . Let ��)( ii zV  as ii zz �� , i = 1, …, zn . Let ��
� zn

i ii tzVtzV
1

))(())((
 

and )0(z � z
 . If  

 0))(( �tzV� ,  (5) 

in the set z
 , it follows that )(tz � z
  for ),0[ ��t .  

Proof. Since V is a positive definite function, the negative semidefinite form in (5) implies that 

))0(())(( zVtzV �  ),0[ ���t , that is, ))(( tzV  is bounded ),0[ ���t . Since � �
� zn

i ii zVzV
1

)()(  is a 
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positive definite function, then  � �

zn

i ii zV
1

)(  becomes bounded ),0[ ���t . From the property of the 

barrier function, that is, ��)( ii zV  only if ii zz �� , i = 1, …, zn , and given that )0(iz � z
 , it can be 

concluded that )(tzi � z
 , i = 1, …, zn , ),0[ ���t .� 

 

 

3. CONTROL DESIGN 
 

Let a Lyapunov function candidate for (1)-(2) be introduced as 

  �� �� �
�
�

�
�
�
�

�



��

�
�

�
�
�
�

�



� qp n

i
iqiq

iq
T

iqn

i
ipip

ip
T

ip
ip xx

xx
xx

xx
kV

1 2
,

2
,

,,
1 2

,
2

,

,,
, ln

2
1ln

2
1 , (6) 

where ipk , , i = 1, …, pn , are positive constants. The time derivative of V is as follows 

  
.1111

11

qq
T
q

T
qq

T
q

T
qppp

T
p

T
qppp

T
p

T
p

qq
T
qppp

T
p

xGuxFxKGxxKF

xxxKxV










��������

����

��

���
 (7) 

where pK = � �
pnpp kk ,1, ,,diag � , and p�  and q�  are as follows. 

  � �2
,

2
,

2
1,

2
1, ,,diag

pp npnpppp xxxx 

�� � ,  (8) 

  ��q � �2
,

2
,

2
1,

2
1, ,,diag

qq nqnqqq xxxx 

 � . (9) 

Let the control law be designed as 

  � �vxKxKGGu qqppp
T
pqq ����
� 

 11 , (10) 

where qK = � �
qnqq kk ,1, ,,diag �  is a diagonal constant matrix, iqk , , i = 1, …, qn ,  are positive constants,

and v is to be designed. The time derivative of V becomes 

  
.1111

1111

qqqqqppppFqq
T

qqq
T
q

qq
T

q
T
qppp

T
p

T
pqq

T
qqq

T
q

xFxxKkxvxKx

xFxKFxvxKxV

p













�����
�
�

�����
�
�

��

���
 (11) 

Let v be designed as follows. 

 

� �� �
��

�
�
�

�

����
�




.0if                        ,0

,0if  ,/1

q

qqqqqqpppF

x

xxxFxk
v q

��
 (12) 

If 0�qx , (11) becomes 

 

� �
� �

,0

/

/

1

111

11

qqq
T
q

qqqqqppppFqqq
T
qqq

qq
T
qpppFqqq

T
q

xKx

xFxxKkxxxF

xxxxkxKxV













�


������

���


���

��

 (13) 

in the set that  xp� p
  and xq� q
 . If 0�qx , 0)( �tV� . 
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Theorem. Consider the system (1)-(2) under Assumptions 1-3. Let the control law be chosen as 

follows. 

� � ��
��

�
�
�

����


���������

�










.0 if                                                                          ),(

 ,0 if      ,/)(
1

11

qqqppp
T
pq

T
q

qqqqqqpppFqqppp
T
pq

T
q

xxKxKGG

xxxFxkxKxKGG
u

��
 (14) 

Then, if xp(0)� p
  and xq(0)� q
 , it follows that xp(t)� p
  and xq(t)� q
  for ),0[ ��t . The origin x = 0 

is asymptotically stable. 

Proof. We first show that xp(t) � p
 and xq(t) � q
  for �t ),0[ � . Since 0�V�  for xp(t) � p
  and 

xq(t)� q
 , it is concluded that ))0(())(( xVtxV �  for ),0[ ��t . According to the lemma, if xp(0) p
�  and 

xq(0) q
� , it follows that xp(t) p
�  and xq(t) q
�  for ),0[ ��t . 

 

Now, we show that xp(t) � 0 and xq(t) � 0 as t � � . If 0�qx , the closed-loop system of (1)-(2) 

becomes 

 qpppp xGFx �� �� , (15) 

 

� �� �./11
qqqqqppppFqqppp

T
pqqqq xxFxKkxKxKGFx ��� ���

���� 

�  (16) 

Let S = { xp(t)� p
 , xq(t)� q
 : V� (xp(t), xq(t)) = 0}. Since 01
qqq

T
q xKxV 
�
� , 0�V�  implies that  xq(t)

0� . Then, S = {xp )(t � p
 , xq(t)� q
 : xq(t) = 0}. Suppose that x(t) is a trajectory that belongs 

identically to S, then )(txq = 0 implies that )(txq� = 0. According to Assumption 2, � � �)(txFp  )(txk qFp
, 

)(txq = 0 implies that � � �)(txFp 0. Then, from (15), )(tx p = c, where c is a constant vector.  

 

Since )(txq = 0, )(txq� = 0, and from the Assumption 2 � � �)(txFq  )(txk qFq
, (16) becomes 

cKG pp
T
pq

1
�� = 0, and therefore )(tx p = c = 0. The only solution that can stay identically in S is 

)(tx p = )(txq = 0. Thus, it is obtained that xp and xq go to zero as ��t . � 

 

Remark 2. By using (14), the origin of (1)-(2) becomes the only equilibrium point for xp� p
 , xq� q
 . 

The linearization of (15)-(16) around the origin yields 
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. (17) 

Then, the spectrum of the matrix in (15) and (16) is completely assigned by pK  and qK . 

International Journal of Applied Mathematics and Statistics

15



4. SIMULATION RESULTS 

4.1. Simulation of Second Order Nonlinear System 

In this subsection, to demonstrate the performance of the proposed control law, a numerical study of a 

single-input second order system is presented. The following nonlinear system is considered (for 

brevity, the independent variable t is omitted if there is no confusion). 

 21121 sin xxxx ���� , (18) 

 uxxx ��� 1
2
222 �� , (19) 

where 1x  and 2x  are the states, which are constrained by 11 )( xtx �  and 22 )( xtx � , respectively, 1�  

and 2�  are unknown parameters with 11 �� �  and 22 �� � , 1�  and 2�  are the bounds, respectively, 

and u is the control input. Let a Lyapunov function candidate for (18)-(19) be the following. 

 � � � � � �� �2
2

1
2

2
1

1
11 lnln2/1 xxkV 

 ���� , (20) 

where 1k  is a positive constant, 2
1

2
11 xx 
�� , and 2

2
2
22 xx 
�� . Let the control input be designed as 
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� ���

�
�
�

����


����

���
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,0  if                       ,1

,0  if ,sgn1

212
1

11

22
2
22

2
112

1
112212

1
11

xxk

xxxxkxkxk
u

��
 (21) 

where 2k  is a positive constant. If 02 �x , the substitution of (21) into (18)-(19) yields: 

 21121 sin xxxx ���� , (22) 

 � � � � .sgn 2
2
22

2
112

1
112212

1
11

2
222 xxxkxkxkxx ��� ���

��
� 

�  (23) 

Using (22)-(23), the time derivative of V in (20) becomes 

 

� �

,0

sin
2
2

1
22

3
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1
22

2
11

1
112

2
22

1
2

2
11

1
11

2
2

1
22

�
�
�

�������
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xk

xxxkxxxkxkV �����

 (24) 

in the set that 11 )( xtx �  and 22 )( xtx � . From (21)-(23), it is concluded that, if 11 )0( xx �  and 

22 )0( xx � , 11 )( xtx �  and 22 )( xtx �  for ),0[ ��t , and )(1 tx , 0)(2 �tx  as ��t . 

 

A quadratic-function-based control law is also simulated. Let a Lyapunov function candidate for (18)-

(19) be 

 � � � �2
2

2
112/1 xxkV �� , (25) 

and the control law be 

 
� � � � � �
� ��

�
�

��

��

�


�
.0  if                      ,1
,0  if ,sgn1

211

22
2
22

2
1112211

xxk
xxxxkxkxk

u
��

 (26) 

If 02 �x , the substitution of (26) into (18)-(19) yields: 

 21121 sin xxxx ���� , (27) 

 � � � �2
2
22

2
1112211

2
222 sgn xxxkxkxkxx ��� �


�� . (28) 

Using (27)-(28), the time derivative of the Lyapunov function V in (24) becomes 
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� �

.0
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2
22

3
222

2
1112

2
22

2
111

2
22

�

�

���

�

xk

xxxkxxxkxkV �����

 (29) 

From (27)-(29), it is concluded that )(1 tx , 0)(2 �tx  as ��t .  

 

A control law based on the receding horizon NMPC is also simulated, see [24] for details. 

 

The performance of the control law based upon the barrier function, the second one based upon the 
quadratic function in, and the third one based upon the NMPC are compared. For the barrier-function-
based and quadratic-function-based control law, the gains are set to k1 = 8 and k2 = 4, in which the 
eigenvalues of the closed-loop linearized system of (22)-(23) and (27)-(28) are set to j22 �
 . The 

bounds of the states are �� 2`1 xx 0.4. The unknown parameters 1�  and 2�  are normally distributed 

random signals with 1� , 2� < 1. The phase portraits of the system using the barrier-function-based, 

the quadratic-function-based, and the NMPC-based control laws are depicted in Figs. 1-3, 
respectively. The trajectories using the barrier-function-based control law (21) and the NMPC do not 
violate the constraints for all time when the initial conditions are )0(1x , �)0(2x  0.4. However, using 

the quadratic-function-based control law in (26), the trajectories violate their constraints when the 
initial conditions are close to the constraints. 

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
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0.3

0.4

0.5

 
Fig. 1. Phase portrait of the system (18)-(19) using control law derived from the barrier function as the 

Lyapunov function. 
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Fig. 2. Phase portrait of the system (18)-(19) using using the control law derived from the quadratic 

Lyapunov function. 
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x1  
Fig. 3. Phase portrait of the system (18)-(19) using the NMPC. 

 

Figs. 4-6 shows the motions of 1x (t) and 2x (t) with barrier-function-based, quadratic-function-based, 

and the NMPC control laws, respectively. The initial conditions are 1x (0) = 2x (0) = 0.395. Using the 

barrier-function-based control law, 1x  and 2x  reach zero in 3 s and do not violate the given 
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constraints for all time. If using quadratic-function-based control law, 1x violates the constraint from 

0.01 s to 0.13 s, and 2x  violates from 0.17 s to 0.63 s, respectively. If using the NMPC, 1x  and 2x  go to 

zero in 10 s and their constraints are not violated for all time. It should be noted that the computation 
time of the control input of the barrier-function-based control law and the quadratic-function-based 
control law took 10–3 ms. On the other hand, the NMPC took 1.642 s for computing the control input. 
Fig. 7 depicts the control inputs of barrier-function-based, quadratic-function-based, and the NMPC 
control laws, respectively. The barrier-function-based control law provides the fast changing of the 
control input at the beginning compared to other control laws. 
   

0 1 2 3 4
-0.4

-0.2

0

0.2

0.4

x 1
,x

2

4.021 
�
�
 xx

4.021 �� xx

 
Fig. 4. x1(t) and x2(t) of system (18)-(19) using barrier-function-based control law: x1(t) and x2(t)

converge to zero in 3 s while the constraints are not violated. 
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-0.4
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0

0.2
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x 1
,x

2

4.021 
�
�
 xx

4.021 �� xx

 
Fig. 5. x1(t) and x2(t) of system (18)-(19) using quadratic-function-based control law: x1(t) and x2(t)

converge to zero in 3 s, but both violate the constraints. 
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4.021 
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�
 xx
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Fig. 6. x1(t) and x2(t) of system (18)-(19) using the NMPC control law: x1(t) and x2(t) converge to zero in 

10 s while the constraints are not violated. 
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-2.5

-2

-1.5

-1

-0.5

0
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Fig. 7. Control input u used in Figs. 4-6.  

 
 

4.2. Simulation of Multi-Input Nonlinear Systems 

In this section, the following two-input nonlinear system is investigated. 

 qppp xGFx �� 1�� , (30) 

 uGFx qqq �� 2�� , (31) 

where xp and xq are the states, % &T
p xxx 21,� , % &T

q xxx 43,� , that are constrained by 1�ix , i = 1~4, 1�  

and 2�  are the unknown parameters with 11 �� �  and 22 �� � , respectively, �pF % ,sin2.0 3x &Txx 432.0 , 

�qF  % ,1.0 32 xx
 & Txx 412.0 , , 
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and % &Tuuu 21,�  are the inputs. 
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The control law based upon the barrier function is designed as follows: 
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where  IKK qp 2�� , 1�Fk , ,(diag 2
1

2
1 xxp 
��  
2

2x )2
2x , ,(diag 2

3
2
3 xxq 
��  )2

4
2
4 xx 
 , and ix = 1,    

i = 1~4. Fig. 8 shows the trajectories of xi(t), i = 1~4, of the system (30)-(31) when the control law (34) 
is used. The initial conditions are xi(0) = �0.995, i = 1~4. The unknown parameters are uniformly 

distributed random signals with bounds 2.01 ��  and 1.02 �� . All the trajectories converge to zero and 
do not violate the constraints at all time. Fig. 9 depicts the control inputs provided through (34). 

 

0 2 4 6 8

-1

-0.5

0

0.5

1
14321 ���� xxxx

14321 
�
�
�
�
 xxxx

x 1
,x

2,
x 3

,x
4

 
Fig. 8. xi(t), i = 1-4, of the system (30)-(31) with barrier-function-based control law. 
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Fig. 9. Control input u1 and u2 used in Fig. 8. 
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5. CONCLUSIONS 

The asymptotic stabilization control for nonlinear systems with state constraints was addressed. A 
barrier function was utilized as a Lyapunov function candidate in deriving the control law. The method 
in deriving the control law does not require offline optimization method, and thus the control algorithm 
is calculated very fast. The proposed control law guaranteed the asymptotic stability of the origin for 
all initial conditions inside the constraint region, while the given constraints were never violated. The 
desired spectrum of the linearized closed loop system was determined by designing the control gains, 
and thus a fast convergence of the states from all initial conditions within the constraint-region to the 
origin was achieved. The performance of the proposed control laws was compared with the one 
derived from a quadratic Lyapunov function and the NMPC. The proposed control law performed best 
in the aspects of convergence of the states to zero and in computing time of the control law among 
the three methods. 
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